Proof by Induction

Questions

Q1.

(i) A sequence of numbers is defined by

$$u_1 = 6, \qquad u_2 = 27$$

$$u_{n+2} = 6u_{n+1} - 9u_n \qquad n \ge 1$$
Prove by induction that, for $n \in \mathbb{Z}^+$

$$u_n = 3^n(n+1)$$

(6)

(ii) Prove by induction that, for $n \in \mathbb{Z}^+$

$$f(n) = 3^{3n-2} + 2^{3n+1}$$
 is divisible by 19

(6)

(Total for question = 12 marks)

Q2.

Prove by mathematical induction that, for $n \in \mathbb{N}$

$$\sum_{r=1}^{n} \frac{1}{(2r-1)(2r+1)} = \frac{n}{2n+1}$$

(Total for question = 6 marks)

Q3.

Prove by induction that for all positive integers n

$$f(n) = 3^{2n+4} - 2^{2n}$$

is divisible by 5

(Total for question = 6 marks)

Q4.

Prove by induction that, for $n \in \mathbb{Z}^+$

$$f(n) = 2^{n+2} + 3^{2n+1}$$

is divisible by 7

(Total for question = 6 marks)

Q5.

(a) Prove by induction that, for all positive integers *n*,

$$\sum_{r=1}^{n} r(r+1)(2r+1) = \frac{1}{2} n(n+1)^2(n+2)$$

(6)

(b) Hence, show that, for all positive integers *n*,

$$\sum_{r=n}^{2n} r(r+1)(2r+1) = \frac{1}{2}n(n+1)(an+b)(cn+d)$$

where *a*, *b*, *c* and *d* are integers to be determined.

(3)

(Total for question = 9 marks)

Q6.

(i) Prove by induction that for $n \in \mathbb{Z}^+$

$$\begin{pmatrix} 5 & -8\\ 2 & -3 \end{pmatrix}^n = \begin{pmatrix} 4n+1 & -8n\\ 2n & 1-4n \end{pmatrix}$$
(6)

(ii) Prove by induction that for $n \in \mathbb{Z}^+$

$$f(n) = 4^{n+1} + 5^{2n-1}$$

is divisible by 21

(6)

(Total for question = 12 marks)

Q7.

Prove by induction that for all positive integers *n*,

$$f(n) = 2^{3n+1} + 3(5^{2n+1})$$

is divisible by 17

(6)

(Total for question = 6 marks)

Q8.

(a) Prove by induction that for all positive integers *n*,

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$
(6)

(b) Use the standard results for $\sum_{r=1}^{n} r^3$ and $\sum_{r=1}^{n} r$ to show that for all positive integers *n*,

$$\sum_{r=1}^{n} r(r+6)(r-6) = \frac{1}{4}n(n+1)(n-8)(n+9)$$
(4)

(c) Hence find the value of *n* that satisfies

$$\sum_{r=1}^{n} r(r+6)(r-6) = 17 \sum_{r=1}^{n} r^{2}$$
(5)

Q9.

(i)

$$\mathbf{M} = \begin{pmatrix} 2 & a & 4 \\ 1 & -1 & -1 \\ -1 & 2 & -1 \end{pmatrix}$$

where a is a constant.

(a) For which values of a does the matrix **M** have an inverse?

(2)

(4)

- Given that **M** is non-singular,
- (b) find \mathbf{M}^{-1} in terms of a
- (ii) Prove by induction that for all positive integers *n*,

$$\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^n = \begin{pmatrix} 3^n & 0 \\ 3(3^n - 1) & 1 \end{pmatrix}$$

(6)

(Total for question = 12 marks)

Mark Scheme – Proof by Induction

Q1.

Number	Scheme	Mark
Number	$u_{n+2} = 6u_{n+1} - 9u_n$, $n \ge 1$, $u_1 = 6$, $u_2 = 27$; $u_n = 3^n(n+1)$	
(i)	$u_{n+1} = 0$ $u_{n+1} = 1$, $u_1 = 3(2) = 6$ Check that $u_1 = 6$ and $u_2 = 27$	B1
	$n = 2; u_2 = 3^2(2+1) = 27$	
	So u_n is true when $n = 1$ and $n = 2$.	
	Assume that $u_k = 3^k(k+1)$ and $u_{k+1} = 3^{k+1}(k+2)$ are true. Could assume for	
	Assume that $u_k = 5$ (n + 1) and $u_{k+1} = 5$ (n + 2) are true. n = k, n = k - 1 and	
	show for $n = k + 1$	
	Then $u_{k+2} = 6u_{k+1} - 9u_k$	
	$= 6(3^{k+1})(k+2) - 9(3^k)(k+1)$ Substituting u_k and u_{k+1} into	M1
	$u_{k+2} = 6u_{k+1} - 9u_k$	
	Correct expression	
	$= 2(3^{k+2})(k+2) - (3^{k+2})(k+1)$ Achieves an expression in 3^{k+2}	M1
	$= (3^{k+2})(2k+4-k-1)$	
	$= (3^{k+2})(k+3)$	
	$= (3^{k+2})(k+2+1) $ (3 ^{k+2})(k+2+1) or (3 ^{k+2})(k+3)	A1
	If the result is true for $n = k$ and $n = k+1$ then it is now true for $n =$ Correct conclusion seen	A1
	<i>k</i> +2. As it is true for $n = 1$ and $n = 2$ then it is true for all $n \in \mathbb{Z}^+$. at the end. Condone true	cso
	for $n = 1$ and $n = 2$ seen anywhere.	
	This should be	
	compatible with	
	assumptions.	L.
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1}$ is divisible by 19	1
	In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is	
	dependent on at least one accuracy being awarded and making $\mathbf{f}(k+1)$ the subject and the	
~	final A is correct solution only.	DI
(ii) Way 1	$f(1) = 3^1 + 2^4 = 19$ {which is divisible by 19}. Shows $f(1) = 19$	B1
way 1		
	$\{:, f(n) \text{ is divisible by } 19 \text{ when } n = 1 \}$	
	{ $f(n)$ is divisible by 19 when $n = 1$ } {Assume that for $n = k$,	
	{Assume that for $n = k$,	
	{Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.}	000000
	{Assume that for $n = k$,	000000
	{Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.} $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power	000000
	{Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.} $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$	000000
	{Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.} $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$	
	{Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.} $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$ $= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1})$ or $7f(k)$; $19(3^{3k-2})$	M1
	{Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.} $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$ $= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1})$ or $7f(k)$; $19(3^{3k-2})$ $or = 26(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ or $26(3^{3k-2} + 2^{3k+1})$ or $26f(k)$; $-19(2^{3k+1})$	M1 A1;
	{Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.} $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$ $= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1})$ or $7f(k)$; $19(3^{3k-2})$ $or = 26(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ or $26(3^{3k-2} + 2^{3k+1})$ or $26f(k)$; $-19(2^{3k+1})$ $= 7f(k) + 19(3^{3k-2})$	M1 A1;
	{Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.} $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$ $= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1})$ or $7f(k)$; $19(3^{3k-2})$ $or = 26(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ or $26(3^{3k-2} + 2^{3k+1})$ or $26f(k)$; $-19(2^{3k+1})$ $= 7f(k) + 19(3^{3k-2})$ $or = 26f(k) - 19(2^{3k+1})$	M1 A1; A1
	{Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.} $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$ $= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1})$ or $7f(k)$; $19(3^{3k-2})$ or $= 26(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ or $26(3^{3k-2} + 2^{3k+1})$ or $26f(k)$; $-19(2^{3k+1})$ $= 7f(k) + 19(3^{3k-2})$ or $= 26f(k) - 19(2^{3k+1})$ $\therefore f(k+1) = 8f(k) + 19(3^{3k-2})$ Dependent on at least one of the previous accuracy	M1 A1;
	{Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.} $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$ $= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1})$ or $7f(k)$; $19(3^{3k-2})$ $or = 26(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ or $26(3^{3k-2} + 2^{3k+1})$ or $26f(k)$; $-19(2^{3k+1})$ $= 7f(k) + 19(3^{3k-2})$ $or = 26f(k) - 19(2^{3k+1})$	M1 A1; A1
	{Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.} $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$ $= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1})$ or $7f(k)$; $19(3^{3k-2})$ or $= 26(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ $= 7f(k) + 19(3^{3k-2})$ or $= 26f(k) - 19(2^{3k+1})$ $\therefore f(k+1) = 8f(k) + 19(3^{3k-2})$ Dependent on at least one of the previous accuracy marks being awarded. Makes Applies $f(k+1)$ with at least 1 power correct the subject	M1 A1; A1
	{Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.} $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$ $= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1})$ or $7f(k)$; $19(3^{3k-2})$ or $= 26(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ or $26(3^{3k-2} + 2^{3k+1})$ or $26f(k)$; $-19(2^{3k+1})$ $= 7f(k) + 19(3^{3k-2})$ or $= 26f(k) - 19(2^{3k+1})$ $\therefore f(k+1) = 8f(k) + 19(3^{3k-2})$ Dependent on at least one of the previous accuracy marks being awarded. Makes Applies $f(k+1)$ with at least 1 power correct	M1 A1; A1

3 3	If the result is true for $n = k$, then it is now true for $n = k + 1$. As the result Correct conclusion	A1
	has shown to be true for $n = 1$, then the result is true for all $n \in \mathbb{Z}^+$. Seen at the end. Condone true for $n = 1$ stated earlier.	cso
(ii)	$f(1) = 3^1 + 2^4 = 19$ {which is divisible by 19}. Shows $f(1) = 19$	[6] B1
Way 2	$\{: f(n) \text{ is divisible by 19 when } n = 1\}$	
	Assume that for $n = k$,	
	$f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.	
	$f(k+1) = 3^{3(k+1)-2} + 2^{3(k+1)+1}$ Applies $f(k+1)$ with at least 1 power correct	M1
	$f(k+1) = 27(3^{3k-2}) + 8(2^{3k+1})$	
	$= 8(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $8(3^{3k-2} + 2^{3k+1})$ or $8f(k); 19(3^{3k-2})$	A1;
	or $= 27(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ or $27(3^{3k-2} + 2^{3k+1})$ or $27f(k); -19(2^{3k+1})$	A1
	$\therefore f(k+1) = 8f(k) + 19(3^{3k-2})$ Dependent on at least one of the previous	dM1
	or $f(k+1) = 27f(k) - 19(2^{3k+1})$ accuracy marks being awarded.	
	$\{: f(k+1) = 8f(k) + 19(3^{3k-2}) \text{ is divisible by 19 as} \}$	
	both $8f(k)$ and $19(3^{3k-2})$ are both divisible by 19}	
	If the result is true for $n = k$, then it is now true for $n = k + 1$. As the result Correct conclusion	A1
	has shown to be true for $n = 1$, then the result is true for all $n \in \mathbb{Z}^+$. seen at the end.	cso
	Condone true for $n = 1$ stated earlier.	
	- I stated earlier.	[6]
2	$f(n) = 3^{3n-2} + 2^{3n+1}$ is divisible by 19	22
(ii)	$f(1) = 3^1 + 2^4 = 19$ {which is divisible by 19}. Shows $f(1) = 19$	B1
Way 3	$\{: f(n) \text{ is divisible by 19 when } n = 1 \}$	
	Assume that for $n = k$,	
	$f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$.	
	$f(k+1) - \alpha f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - \alpha (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct	M1
	$f(k+1) - \alpha f(k) = (27 - \alpha)(3^{3k-2}) + (8 - \alpha)2^{3k+1}$	
	$= (8-\alpha)(3^{3k-2}+2^{3k+1})+19(3^{3k-2}) \qquad (8-\alpha)(3^{3k-2}+2^{3k+1}) \text{ or } (8-\alpha)f(k); 19(3^{3k-2})$	A1;
	or = $(27 - \alpha)(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ NB choosing $\alpha = 8$ makes first term disappear.	A1
	$(27-\alpha)(3^{3k-2}+2^{3k+1})$ or $(27-\alpha)f(k);-19(2^{3k+1})$	
	NB choosing $\alpha = 27$ makes first term disappear.	5.0
	$\therefore f(k+1) = 8f(k) + 19(3^{3k-2})$ Dependent on at least one of the previous accuracy marks being awarded.	dM1
	or $f(k+1) = 27f(k) - 19(2^{3k+1})$ Makes $f(k+1)$ the subject.	
	$\{: f(k+1) = 27f(k) - 19(2^{3k+1}) \text{ is divisible by 19 as both } 27f(k)$	
	and $19(2^{3k+1})$ are both divisible by 19} If the result is true for $n = k$, then it is now true for $n = k+1$. As the result Correct conclusion	A 1
	If the result is true for $n = k$, then it is now true for $n = k + 1$. As the result has shown to be true for $n = 1$, then the result is true for all $n \in \mathbb{Z}^+$. Correct conclusion seen at the end. Condone true for n	A1 cso
	= 1 stated earlier.	
		[6] 12
	Question Notes	12
(ii)	Accept use of $f(k) = 3^{3k-2} + 2^{3k+1} = 19m$ o.e. and award method and accuracy as above.	

Q2.

1

Question	Scheme	Marks	AOs
	$n=1, \sum_{r=1}^{1} \frac{1}{(2r-1)(2r+1)} = \frac{1}{1\times 3} = \frac{1}{3} \text{ and } \frac{n}{2n+1} = \frac{1}{2\times 1+1} = \frac{1}{3} \text{ (true for } n=1)$	B 1	2.2a
	Assume general statement is true for $n = k$. So assume $\sum_{r=1}^{k} \frac{1}{(2r-1)(2r+1)} = \frac{k}{2k+1}$ is true.	M1	2.4
	$\left(\sum_{r=1}^{k+1} \frac{1}{(2r-1)(2r+1)}\right) = \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$	M1	2.1
	$=\frac{k(2k+3)+1}{(2k+1)(2k+3)}$	dM1	1.1b
	$=\frac{2k^2+3k+1}{(2k+1)(2k+3)}=\frac{(2k+1)(k+1)}{(2k+1)(2k+3)}=\frac{(k+1)}{2(k+1)+1} \text{ or } \frac{k+1}{2k+3}$	A1	1.1b
	As $\sum_{r=1}^{k+1} \frac{1}{(2r-1)(2r+1)} = \frac{(k+1)}{2(k+1)+1}$ then the general result is true for $n = k + 1$ As the general result has been shown to be true for $n = 1$, and true for $\underline{n = k}$ implies true for $n = k + 1$, so the result is true for all $\underline{n} \in \mathbb{N}$	Alcso	2.4
		(6)	
		(6	marks

Notes

	Notes
B1	Substitutes $n = 1$ into both sides of the statement to show they are equal. As a minimum expect to see $\frac{1}{1 \times 3}$ and $\frac{1}{2+1}$ for the substitutions. (No need to state true for $n = 1$ for this mark.)
M1	Assumes (general result) true for $n = k$. (Assume (true for) $n = k$ is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for $n = k$ then etc.)
M1	Attempts to add $(k+1)$ th term to their sum of k terms. Must be adding the $(k+1)$ th
dM1	denominator for their fractions, which may be $(2k+1)^2(2k+3)$ (allow a slip in the numerator).
A1	Correct algebraic work leading to $\frac{(k+1)}{2(k+1)+1}$ or $\frac{k+1}{2k+3}$
A1	cso Depends on all except the B mark being scored (but must have an attempt to show the $n = 1$ case). Demonstrates the expression is the correct for $n = k + 1$ (both sides must have been seen somewhere) and gives a correct induction statement with all three underlined statements (or equivalents) seen at some stage during their solution (so true for $n = 1$ may be seen at the start). For demonstrating the correct expression, accept giving in the form $\frac{(k+1)}{2(k+1)+1}$, or
	reaching $\frac{k+1}{2k+3}$ and stating "which is the correct form with $n = k + 1$ " or similar – but some indication is needed. Note: if mixed variables are used in working (<i>r</i> 's and <i>k</i> 's mixed up) then withhold the final A. Note: If <i>n</i> is used throughout instead of <i>k</i> allow all marks if earned.

Q3.

Question	Scheme	Marks	AOs
	$\underline{\text{Way 1}} f(k+1) - f(k)$		
	When $n = 1$, $3^{2n+4} - 2^{2n} = 729 - 4 = 725$ (725=145×5) so the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5	M1	2.4
	$f(k+1)-f(k) = 3^{2k+6} - 2^{2k+2} - 3^{2k+4} + 2^{2k}$	M1	2.1
22	either 8f $k + 5 \times 2^{2k}$ or 3f $k + 5 \times 3^{2k+4}$	A1	1.1b
20	f $k+1 = 9f k + 5 \times 2^{2k}$ or f $k+1 = 4f k + 5 \times 3^{2k+4}$ o.e.	A1	1.1b
	If true for $n = k$ then it is true for n = k + 1 and as it is true for $n = 1$, the statement is true for all (positive integers) n . (Allow 'for all values')	A1	2.4
		(6)	

Way 2 $f(k+1)$		
When $n = 1$, $3^{2n+4} - 2^{2n} = 729 - 4 = 725$ (725 = 145×5) so the statement is true for $n = 1$	B1	2.2a
Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5	M1	2.4
$f(k+1) = 3^{2(k+1)+4} - 2^{2(k+1)} \left(= 3^{2k+6} - 2^{2k+2}\right)$	M1	2.1
f $k+1 = 9f k + 5 \times 2^{2k}$ or f $k+1 = 4f k + 5 \times 3^{2k+4}$ o.e.	A1 A1	1.1b 1.1b
If true for $n = k$ then it is true for $\underline{n = k + 1}$ and as it is true for $n = 1$, the statement is true for all(positive integers) \underline{n} . (Allow 'for all values')	A1	2.4
	(6)	
$\underline{\mathbf{Wav}\ 3}\ \mathbf{f}(k) = 5M$		
When $n = 1$, $3^{2n+4} - 2^{2n} = 729 - 4 = 725$ (725 = 145×5) so the statement is true for $n = 1$	B 1	2.2a
Assume true for $n = k$ so $3^{2k+4} - 2^{2k} = 5M$	M1	2.4
$\mathbf{f}(k+1) = 3^{2(k+1)+4} - 2^{2(k+1)} \left(= 3^{2k+6} - 2^{2k+2} \right)$	M1	2.1
$ \begin{pmatrix} \mathbf{f}(k+1) = 3^2 \times 3^{2k+4} - 2^2 \times 2^{2k} = 3^2 \times (5M + 2^{2k+2}) - 2^2 \times 2^{2k} \end{pmatrix} $ f $k+1 = 45M + 5 \times 2^{2k}$ o.e. OR $\left(\mathbf{f}(k+1) = 3^2 \times 3^{2k+4} - 2^2 \times 2^{2k} = 3^2 \times 3^{2k+4} - 2^2 \times (3^{2k+4} - 5M) \right) $ f $k+1 = 5 \times 3^{2k+4} + 20M$ o.e.	A1 A1	1.1b 1.1b
If true for $n = k$ then it is true for $\underline{n = k + 1}$ and as it is true for $n = 1$, the statement is true for all(positive integers) \underline{n} . (Allow 'for all values')	A1	2.4
	(6)	

	$\underline{\mathbf{Wav}} 4 \mathbf{f}(k+1) + \mathbf{f}(k)$		
	When $n = 1$, $3^{2n+4} - 2^{2n} = 729 - 4 = 725$ (725 = 145×5) so the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5	M1	2.4
	$f(k+1) + f(k) = 3^{2k+6} - 2^{2k+2} + 3^{2k+4} - 2^{2k}$	<u>M1</u>	2.1
	$f(k+1) + f(k) = 3^{2} \times 3^{2k+4} - 2^{2} \times 2^{2k} + 3^{2k+4} - 2^{2k}$	A1	1.1b
	leading to $10 \times 3^{2k+4} - 5 \times 2^{2k}$		
. 5	f $k+1 = 5[2 \times 3^{2k+4} - 2^{2k}] - f(k)$ o.e.	A1	1.1b
<u>n</u>	$\frac{\text{If true for } n = k \text{ then it is true for}}{k + 1}$ and as it is <u>true for $n = 1$</u> , the statement is <u>true for all</u> (positive integers) <i>n</i> . (Allow 'for all values')	A1	2.4
		(6)	

<u>Way 5</u> $f(k+1) - {}^{\circ}M{}^{\circ}f(k)$ (Selecting a value of M that will lead to multiples of 5)		
When $n = 1$, $3^{2n+4} - 2^{2n} = 729 - 4 = 725$ (725 = 145×5) so the statement is true for $n = 1$	B1	2.2a
Assume true for $n = k$ so $3^{2k+4} - 2^{2k}$ is divisible by 5	M1	2.4
$f(k+1) - Mf(k) = 3^{2k+6} - 2^{2k+2} - M \times 3^{2k+4} + M \times 2^{2k}$	M1	2.1
f $k+1$ -'M'f $k = 9-$ 'M' $\times 3^{2k+4} - 4-$ 'M' $\times 2^{2k}$	A1	1.1b
f $k+1 = 9 - M' \times 3^{2k+4} - 4 - M' \times 2^{2k} + M' f k$ o.e.	A1	1.1b
If true for $n = k$ then it is true for $\underline{n = k + 1}$ and as it is true for $n = 1$, the statement is true for all(positive integers) \underline{n} . (Allow 'for all values')	A1	2.4
	(6)	

Notes Way 1 f(k+1) - f(k)B1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1, this statement can be recovered in their conclusion if says e.g. true for n = 1M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for) n = k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for n = k then etc M1: Attempts f(k+1) - f(k) or equivalent work A1: Achieves a correct simplified expression for f(k+1) - f(k)A1: Achieves a correct expression for f(k+1) in terms of f(k)A1: Correct complete conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all underlined points either at the end of their solution or as a narrative in their solution. Way 2 f(k+1)B1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1, this statement can be recovered in their conclusion if says e.g. true for n = 1. M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for) n = k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for n = k then ... etc M1: Attempts f(k+1)A1: Correctly achieves either 9f k or 5×2^{2k} or either 4f k or $5 \times 3^{2k+4}$ A1: Achieves a correct expression for f(k+1) in terms of f(k)A1: Correct complete conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all underlined points either at the end of their solution or as a narrative in their solution. Way 3 f(k) = 5MB1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1, this statement can be recovered in their conclusion if says e.g. true for n = 1. M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for) n = k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for n = k then ... etc. M1: Attempts f(k+1)A1: Correctly achieves either 45M or 5×2^{2k} or either 20M or $5 \times 3^{2k+4}$ A1: Achieves a correct expression for f(k+1) in terms of M and 2^{2k} or M and 3^{2k+4} A1: Correct complete conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all underlined points either at the end of their solution or as a narrative in their solution. Way 4 f(k+1) + f(k)B1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1, this statement can be recovered in their conclusion if says e.g. true for n = 1M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for) n = k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for

n = k then ... etc M1: Attempts f(k+1) + f(k) or equivalent work

A1: Achieves a correct simplified expression for f(k+1) + f(k)

A1: Achieves a correct expression for f $k+1 = 5[2 \times 3^{2k+4} - 2^{2k}] - f(k)$

A1: Correct complete conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all underlined points either at the end of their solution or as a narrative in their solution.

<u>Way 5</u> f(k+1) - Mf(k) (Selects a suitable value for M which leads to divisibility of 5) B1: Shows the statement is true for n = 1. Needs to show f(1) = 725 and conclusion true for n = 1, this statement can be recovered in their conclusion if says e.g. true for n = 1M1: Makes an assumption statement that assumes the result is true for n = k. Assume (true for) n = k is sufficient. This mark may be recovered in their conclusion if they say e.g. if true for n = k then ...etc M1: Attempts f(k+1) - Mf(k) or equivalent work A1: Achieves a correct simplified expression, f k+1 -'M'f k which is divisible by 5 f k+1 -'M'f k = 9-'M' $\times 3^{2k+4} - 4$ -'M' $\times 2^{2k}$ A1: Achieves a correct expression for f k+1 = 9-'M' $\times 3^{2k+4} - 4$ -'M' $\times 2^{2k}$ +'M'f k which is divisible by 5

A1: Correct complete conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all underlined points either at the end of their solution or as a narrative in their solution.

Q4.

Question	Scheme	Marks	AOs
	Way 1: $f(k+1)-f(k)$ When $n=1$, $2^{n+2}+3^{2n+1}=2^3+3^3=35$ Shows the statement is true for $n=1$, allow 5(7)	B1	2.2a
	Assume true for $n = k$, so $2^{k+2} + 3^{2k+1}$ is divisible by 7	M1	2.4
	$f(k+1)-f(k) = 2^{k+3} + 3^{2k+3} - (2^{k+2} + 3^{2k+1})$	M1	2.1
	$= 2 \times 2^{k+2} + 9 \times 3^{2k+1} - 2^{k+2} - 3^{2k+1}$ = 2 ^{k+2} + 8×3 ^{2k+1} = f(k) + 7×3 ^{2k+1} or 8f(k) - 7×2 ^{k+2}	A1	1.1b
	$f(k+1) = 2f(k) + 7 \times 3^{2k+1}$ or $9f(k) - 7 \times 2^{k+2}$	A1	1.1b
	If true for $n = k$ then true for $n = k+1$ and as it is true for $n = 1$ the statement is true for all (positive integers) n	A1	2.4
		(6)	
	Way 2: $f(k+1)$ When $n=1$, $2^{n+2}+3^{2n+1}=2^3+3^3=35$ So the statement is true for $n=1$	B1	2.2a
	Assume true for $n = k$, so $2^{k+2} + 3^{2k+1}$ is divisible by 7	M1	2.4
	$f(k+1) = 2^{(k+1)+2} + 3^{2(k+1)+1}$	M1	2.1
	$f(k+1) = 2^{k+3} + 3^{2k+3} = 2 \times 2^{k+2} + 9 \times 3^{2k+1}$ = 2(2 ^{k+2} + 3 ^{2k+1}) + 7×3 ^{2k+1} = 2f(k) + 7×3 ^{2k+1} or 9f(k) - 7×2 ^{k+2}	A1 A1	1.1b 1.1b
	If true for $n = k$ then true for $n = k+1$ and as it is true for $n = 1$ the statement is true for all (positive integers) n	A1	2.4
		(6)	

C.	Way 3: $f(k+1) - m f(k)$		
	When $n = 1$, $2^{n+2} + 3^{2n+1} = 2^3 + 3^3 = 35$ So the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$, so $2^{k+2} + 3^{2k+1}$ is divisible by 7	M1	2.4
	$f(k+1) - mf(k) = 2^{k+3} + 3^{2k+3} - m(2^{k+2} + 3^{2k+1})$	M1	2.1
	$= 2 \times 2^{k+2} + 9 \times 3^{2k+1} - m \times 2^{k+2} - m \times 3^{2k+1}$ = $(2-m)2^{k+2} + 9 \times 3^{2k+1} - m \times 3^{2k+1}$ = $(2-m)(2^{k+2} + 3^{2k+1}) + 7 \times 3^{2k+1}$	A1	1.1b
	$f(k+1) = (2-m)(2^{k+2}+3^{2k+1}) + 7 \times 3^{2k+1} + mf(k)$	A1	1.1b
	If true for $n = k$ then true for $n = k + 1$ and as it is true for $n = 1$ the statement is true for all (positive integers) n	A1	2.4
		(6)	

Notes:

Way 1: f(k+1) - f(k)

B1: Shows that f(1) = 35 and concludes or shows divisible by 7. This may be seen in the final statement.

M1: Makes a statement that assumes the result is true for some value of n

M1: Attempts f(k+1)-f(k)

A1: Achieves a correct expression for f(k+1)-f(k) in terms of f(k)

A1: Reaches a correct expression for f(k+1) in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks, look out for scoring B1 in this statement. It is gained by conveying the ideas of all four bold points either at the end of their solution or as a narrative in their solution.

Way 2: f(k+1)

B1: Shows that f(1) = 35 and concludes divisible by 7

M1: Makes a statement that assumes the result is true for some value of n

M1: Attempts f(k+1)

A1: Correctly obtains either 2f(k) or $7 \times 3^{2k+1}$ or either 9f(k) or $-7 \times 2^{k+2}$

A1: Reaches a correct expression for f(k+1) in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all four **bold** points either at the end of their solution or as a narrative in their solution.

Way 3:
$$f(k+1) - m f(k)$$

B1: Shows that f(1) = 35 and concludes divisible by 7

M1: Makes a statement that assumes the result is true for some value of n

M1: Attempts f(k+1) - mf(k)

A1: Achieves a correct expression for f(k+1)-mf(k) in terms of f(k)

A1: Reaches a correct expression for f(k+1) in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks. It is gained by conveying the ideas of all four **bold** points either at the end of their solution or as a narrative in their solution.

Q5.

Scheme	Marks	AOs
$n = 1$, $1 = 1(2)(3) = 6$, $r = \frac{1}{2}(1)(2)^2(3) = 6$ (true for $n = 1$)	B1	2.2a
Assume true for $n = k$ so $\sum_{r=1}^{k} r(r+1)(2r+1) = \frac{1}{2}k(k+1)^2(k+2)$	M1	2.4
$\sum_{r=1}^{k+1} r(r+1)(2r+1) = \frac{1}{2}k(k+1)^2(k+2) + (k+1)(k+2)(2k+3)$	M1	2.1
$=\frac{1}{2}(k+1)(k+2)[k(k+1)+2(2k+3)]$	dM1	1.1b
$=\frac{1}{2}(k+1)(k+2)[k^{2}+5k+6] = \frac{1}{2}(k+1)(k+2)(k+2)(k+3)$ Shows that $=\frac{1}{2}(\underline{k+1})(\underline{k+1}+1)^{2}(\underline{k+1}+2)$ Alternatively shows that $\sum_{r=1}^{k+1} r(r+1)(2r+1) = \frac{1}{2}(k+1)(k+1+1)^{2}(k+1+2)$ $=\frac{1}{2}(k+1)(k+2)^{2}(k+3)$ Compares with their summation and concludes true for $n = k+1$, may be seen in the conclusion. If the statement is true for $n = k$ then it has been shown true for $n = k+1$ and as it is true for $n = 1$, the statement is true for all	A1 A1	1.1b 2.4
positive integers n.	(0)	
$\sum_{r=n}^{2n} r(r+1)(2r+1) = \frac{1}{2}(2n)(2n+1)^2(2n+2) - \frac{1}{2}(n-1)n^2(n+1)$	(6) M1	3.1a
$=\frac{1}{2}n(n+1)\Big[4(2n+1)^2 - n(n-1)\Big]$	M1	1.1b
$= \frac{1}{2}n(n+1)(15n^2+17n+4)$ $= \frac{1}{2}n(n+1)(3n+1)(5n+4)$	A1	1.1b
	$n = 1, \text{ lhs} = 1(2)(3) = 6, \text{ rhs} = \frac{1}{2}(1)(2)^{2}(3) = 6$ (true for $n = 1$) Assume true for $n = k$ so $\sum_{r=1}^{k} r(r+1)(2r+1) = \frac{1}{2}k(k+1)^{2}(k+2)$ $\sum_{r=1}^{k+1} r(r+1)(2r+1) = \frac{1}{2}k(k+1)^{2}(k+2) + (k+1)(k+2)(2k+3)$ $= \frac{1}{2}(k+1)(k+2)[k(k+1)+2(2k+3)]$ $= \frac{1}{2}(k+1)(k+2)[k^{2}+5k+6] = \frac{1}{2}(k+1)(k+2)(k+2)(k+3)$ Shows that $= \frac{1}{2}(\frac{k+1}{k+1})(\frac{k+1}{k+1}+1)^{2}(\frac{k+1}{k+2})$ Alternatively shows that $\sum_{r=1}^{k+1} r(r+1)(2r+1) = \frac{1}{2}(k+1)(k+1+1)^{2}(k+1+2)$ $= \frac{1}{2}(k+1)(k+2)^{2}(k+3)$ Compares with their summation and concludes true for $n = k+1$, may be seen in the conclusion. If the statement is true for $n = k$ then it has been shown true for $n = k+1$, may be seen in the conclusion. $\sum_{r=n}^{2n} r(r+1)(2r+1) = \frac{1}{2}(2n)(2n+1)^{2}(2n+2) - \frac{1}{2}(n-1)n^{2}(n+1)$ $= \frac{1}{2}n(n+1)[4(2n+1)^{2} - n(n-1)]$ $= \frac{1}{2}n(n+1)(15n^{2}+17n+4)$	$n = 1, \text{ Ihs} = 1(2)(3) = 6, \text{ rhs} = \frac{1}{2}(1)(2)^{2}(3) = 6$ $(\text{true for } n = 1)$ Assume true for $n = k$ so $\sum_{r=1}^{k} r(r+1)(2r+1) = \frac{1}{2}k(k+1)^{2}(k+2)$ M1 $\frac{k+1}{r-1}r(r+1)(2r+1) = \frac{1}{2}k(k+1)^{2}(k+2) + (k+1)(k+2)(2k+3)$ M1 $= \frac{1}{2}(k+1)(k+2)[k(k+1)+2(2k+3)]$ dM1 $= \frac{1}{2}(k+1)(k+2)[k^{2}+5k+6] = \frac{1}{2}(k+1)(k+2)(k+2)(k+3)$ Shows that $= \frac{1}{2}(k+1)(k+1+1)^{2}(k+1+2)$ Alternatively shows that $\sum_{r=1}^{k+1} r(r+1)(2r+1) = \frac{1}{2}(k+1)(k+1+1)^{2}(k+1+2)$ $= \frac{1}{2}(k+1)(k+2)^{2}(k+3)$ Compares with their summation and concludes true for $n = k+1$, may be seen in the conclusion. If the statement is true for $n = k$ then it has been shown true for $n = k+1$, may be seen in the conclusion. (6) $\sum_{r=n}^{2n} r(r+1)(2r+1) = \frac{1}{2}(2n)(2n+1)^{2}(2n+2) - \frac{1}{2}(n-1)n^{2}(n+1)$ M1 $= \frac{1}{2}n(n+1)[4(2n+1)^{2} - n(n-1)]$ M1 $= \frac{1}{2}n(n+1)(15n^{2}+17n+4)$ A1

Notes(a) Note ePen B1 M1 M1 A1 A1 A1B1: Substitutes n = 1 into both sides to show that they are both equal to 6. (There is no need to state true for n = 1 for this mark)M1: Makes a statement that assumes the result is true for some value of n, say kM1: Adds the (k + 1)th term to the assumed resultdM1: Dependent on previous M, factorises out $\frac{1}{2}(k+1)(k+2)$ A1: Reaches a correct the required expression no errors and shows that this is the correct sum for n = k+1A1: Depends on all except B mark being scored (must have been some attempt to show true for n = 1). Correct conclusion conveying all the points in bold.(b)M1: Realises that $\sum_{r=1}^{2n} r(r+1)(2r+1) - \sum_{r=1}^{n-1} r(r+1)(2r+1)$ is required and uses the result from part (a) to obtain the required sum in terms of nM1: Attempts to factorise by $\frac{1}{2}n(n+1)$

A1: Correct expression or correct values

Q6.

Question	Scheme	Marks	AOs
(i)	$n = 1, \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^{1} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}, \begin{pmatrix} 4 \times 1 + 1 & -8(1) \\ 2 \times 1 & 1 - 4(1) \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$	B1	2.2a
	So the result is true for $n = 1$		
	Assume true for $n = k$ so $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^k = \begin{pmatrix} 4k+1 & -8k \\ 2k & 1-4k \end{pmatrix}$	M1	2.4
	$ \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^{k+1} = \begin{pmatrix} 4k+1 & -8k \\ 2k & 1-4k \end{pmatrix} \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} $		
	$ \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^{k+1} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} 4k+1 & -8k \\ 2k & 1-4k \end{pmatrix} $	M1	1.1b
	$ \begin{pmatrix} 4k+1 & -8k \\ 2k & 1-4k \end{pmatrix} \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 5(4k+1)-16k & -8(4k+1)+24k \\ 10k+2(1-4k) & -16k-3(1-4k) \end{pmatrix} $ or	A1	1.1b
	$ \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} 4k+1 & -8k \\ 2k & 1-4k \end{pmatrix} = \begin{pmatrix} 5(4k+1)-16k & -40k-8(1-4k) \\ 2(1+4k)-6k & -16k-3(1-4k) \end{pmatrix} $		
	$= \begin{pmatrix} 4(k+1)+1 & -8(k+1) \\ 2(k+1) & 1-4(k+1) \end{pmatrix}$	A1	2.1
	If true for $n = k$ then true for $n = k + 1$, true for $n = 1$ so true for all (positive integers) n (Allow "for all values")	A1	2.4
		(6)	

(ii)	f(k+1) - f(k)		
Way 1	When $n = 1$, $4^{n+1} + 5^{2n-1} = 16 + 5 = 21$ so the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $4^{k+1} + 5^{2k-1}$ is divisible by 21	M1	2.4
	$f(k+1) - f(k) = 4^{k+2} + 5^{2k+1} - 4^{k+1} - 5^{2k-1}$	M1	2.1
	$= 4 \times 4^{k+1} + 25 \times 5^{2k-1} - 4^{k+1} - 5^{2k-1}$		
	$= 3f(k) + 21 \times 5^{2k-1}$ or e.g. $= 24f(k) - 21 \times 4^{k+1}$	A1	1.1b
	$f(k+1) = 4f(k) + 21 \times 5^{2k-1}$ or e.g. $f(k+1) = 25f(k) - 21 \times 4^{k+1}$	A1	1.1b
	If true for $n = k$ then true for $n = k + 1$, true for $n = 1$ so true for all (positive integers) n (Allow "for all values")	A1	2.4
		(6)	

(ii)	f(<i>k</i> + 1)		
Way 2	When $n = 1$, $4^{n+1} + 5^{2n-1} = 16 + 5 = 21$ so the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $4^{k+1} + 5^{2k-1}$ is divisible by 21	M1	2.4
	$f(k+1) = 4^{k+1+1} + 5^{2(k+1)-1}$	M1	2.1
	$f(k+1) = 4 \times 4^{k+1} + 5^{2k+1} = 4 \times 4^{k+1} + 4 \times 5^{2k-1} + 25 \times 5^{2k-1} - 4 \times 5^{2k-1}$	A1	1.1b
	$f(k+1) = 4f(k) + 21 \times 5^{2k-1}$	A1	1.1b
	$\frac{\text{If true for } n = k \text{ then true for } n = k + 1, \text{ true for } n = 1 \text{ so true for } n = 1 so true for $	A1	2.4
		(6)	
(ii)	$\mathbf{f}(k+1) - m\mathbf{f}(k)$		2
Way 3	$\frac{f(k+1) - mf(k)}{When \ n = 1, \ 4^{n+1} + 5^{2n-1} = 16 + 5 = 21}$ so the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $4^{k+1} + 5^{2k-1}$ is divisible by 21	M1	2.4
	$f(k+1) - mf(k) = 4^{k+2} + 5^{2k+1} - m(4^{k+1} + 5^{2k-1})$	M1	2.1
	$= (4-m)4^{k+1} + 5^{2k+1} - m \times 5^{2k-1}$ $= (4-m)(4^{k+1} + 5^{2k-1}) + 21 \times 5^{2k-1}$	A1	1.1b
	$= (4-m)(4^{k+1}+5^{2k-1})+21\times 5^{2k-1}+mf(k)$	A1	1.1b
	If true for $n = k$ then true for $n = k + 1$, true for $n = 1$ so true for all (positive integers) n (Allow "for all values")	A1	2.4
		(6));
(ii)	$\mathbf{f}(k) = 21M$		
Way 4	When $n = 1$, $4^{n+1} + 5^{2n-1} = 16 + 5 = 21$ so the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $4^{k+1} + 5^{2k-1} = 21M$	M1	2.4
	$f(k+1) = 4^{k+1+1} + 5^{2(k+1)-1}$	M1	2.1
	$f(k+1) = 4 \times 4^{k+1} + 5^{2k+1} = 4(21M - 5^{2k-1}) + 5^{2k+1}$	A1	1.1b
	$f(k+1) = 84M + 21 \times 5^{2k-1}$	A1	1.1b
	If true for $n = k$ then true for $n = k + 1$, true for $n = 1$ so true for all (positive integers) n (Allow "for all values")	A1	2.4
		(6)	
		(12	marks)

Notes (i) B1: Shows that the result holds for n = 1. Must see substitution into the rhs. The minimum would be: $\begin{pmatrix} 4+1 & -8 \\ 2 & 1-4 \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$. M1: Makes a statement that assumes the result is true for some value of n (Assume (true for) n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for n = k then ... etc.) M1: Sets up a correct multiplication statement either way round A1: Achieves a correct un-simplified matrix A1: Reaches a correct simplified matrix with no errors and the correct un-simplified matrix seen previously. Note that the simplified result may be proved by equivalence. A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution. (ii) Way 1 B1: Shows that f(1) = 21M1: Makes a statement that assumes the result is true for some value of n (Assume (true for) n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for n = k then ... etc.) M1: Attempts f(k + 1) - f(k) or equivalent work A1: Achieves a correct expression for f(k + 1) - f(k) in terms of f(k)A1: Reaches a correct expression for f(k + 1) in terms of f(k)A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution. Way 2 B1: Shows that f(1) = 21M1: Makes a statement that assumes the result is true for some value of n (Assume (true for) n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for n = k then ... etc.) M1: Attempts f(k+1)A1: Correctly obtains 4f(k) or $21 \times 5^{2k-1}$ A1: Reaches a correct expression for f(k + 1) in terms of f(k)A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution. Way 3 B1: Shows that f(1) = 21M1: Makes a statement that assumes the result is true for some value of n (Assume (true for) n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for

n = k then ... etc.)

M1: Attempts f(k + 1) - mf(k)

A1: Achieves a correct expression for f(k + 1) - mf(k) in terms of f(k)

A1: Reaches a correct expression for f(k + 1) in terms of f(k)

A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.

Way 4 B1: Shows that f(1) = 21M1: Makes a statement that assumes the result is true for some value of *n* (Assume (true for) n = k is sufficient – note that this may be recovered in their conclusion if they say e.g. if true for n = k then ... etc.) M1: Attempts f(k + 1)A1: Correctly obtains 84M or $21 \times 5^{2k-1}$ A1: Reaches a correct expression for f(k + 1) in terms of *M* and 5^{2k-1} A1: Correct conclusion. This mark is dependent on all previous marks apart from the B mark. It is gained by conveying the ideas of **all** four underlined points **either** at the end of their solution or

Q7.

as a narrative in their solution.

Question	Scheme	Marks	AOs
	When $n = 1$, $2^{3n+1} + 3(5^{2n+1}) = 16 + 375 = 391$ $391 = 17 \times 23$ so the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $2^{3k+1} + 3(5^{2k+1})$ is divisible by 17	M1	2.4
	$f(k+1) - f(k) = 2^{3k+4} + 3(5^{2k+3}) - 2^{3k+1} - 3(5^{2k+1})$	M1	2.1
	$= 7 \times 2^{3k+1} + 7 \times 3(5^{2k+1}) + 17 \times 3(5^{2k+1})$		
	$=7f(k)+17\times 3(5^{2k+1})$	A1	1.1b
	$f(k+1) = 8f(k) + 17 \times 3(5^{2k+1})$	A1	1.1b
	If the statement is true for $n = k$ then it has been shown true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all positive integers n .	A1	2.4
		(6)	
		(6	marks)

Question	Scheme	Marks	AOs
(a)	$n=1$, $\sum_{r=1}^{1} r^2 = 1$ and $\frac{1}{6}n(n+1)(2n+1) = \frac{1}{6}(1)(2)(3) = 1$	B1	2.2a
	Assume general statement is true for $n = k$. So assume $\sum_{r=1}^{k} r^2 = \frac{1}{6}k(k+1)(2k+1)$ is true.	M1	2.4
	$\sum_{r=1}^{k+1} r^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$	M1	2.1
	$=\frac{1}{6}(k+1)(2k^2+7k+6)$	A1	1.1b
	$=\frac{1}{6}(k+1)(k+2)(2k+3) = \frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1)$	A1	1.1b
	Then the general result is true for $n = k + 1$. As the general result has been shown to be true for $n = 1$, then the general result is true for all $n \in \mathbb{Z}^+$.	A1	2.4
		(6)	
(b)	$\sum_{r=1}^{n} r(r+6)(r-6) = \sum_{r=1}^{n} (r^3 - 36r)$		
	1 2/ 36 / 3	M1	2.1
	$=\frac{1}{4}n^2(n+1)^2-\frac{36}{2}n(n+1)$	A1	1.1b
	$=\frac{1}{4}n(n+1)[n(n+1)-72]$	M1	1. <mark>1</mark> b
	$=\frac{1}{4}n(n+1)(n-8)(n+9)$ * cso	A1*	1. <mark>1</mark> b
		(4)	
(c)	$\frac{1}{4}n(n+1)(n-8)(n+9) = \frac{17}{6}n(n+1)(2n+1)$	M1	1.1b
	$\frac{1}{4}(n-8)(n+9) = \frac{17}{6}(2n+1)$	M1	1.1b
	$3n^2 - 65n - 250 = 0$	A1	1.1b
	(3n+10)(n-25) = 0	M1	1.1b
	(As <i>n</i> must be a positive integer,) $n = 25$	A1	2.3
		(5)	
		(15	marks

		Question Notes
(a)	B1	Checks $n = 1$ works for both sides of the general statement.
	M1	Assumes (general result) true for $n = k$.
	M1	Attempts to add $(k + 1)$ th term to the sum of k terms.
	A1	Correct algebraic work leading to either $\frac{1}{6}(k+1)(2k^2+7k+6)$
		or $\frac{1}{6}(k+2)(2k^2+5k+3)$ or $\frac{1}{6}(2k+3)(k^2+3k+2)$
	A1	Correct algebraic work leading to $\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1)$
	A1	cso leading to a correct induction statement conveying all three underlined points.
(b)	M1	Substitutes at least one of the standard formulae into their expanded expression.
18 18	A1	Correct expression.
	M1	Depends on previous M mark. Attempt to factorise at least $n(n+1)$ having used
		both standard formulae correctly.
	A1*	Obtains $\frac{1}{4}n(n+1)(n-8)(n+9)$ by cso.
(c)	M1	Sets their part (a) answer equal to $\frac{17}{6}n(n+1)(2n+1)$
	M1	Cancels out $n(n+1)$ from both sides of their equation.
	A1	$3n^2 - 65n - 250 = 0$
	M1	A valid method for solving a 3 term quadratic equation.
	A1	Only one solution of $n = 25$

Q9.

Question	Scheme	Marks	AOs
(i)(a)	$ \mathbf{M} = 2(1+2) - a(-1-1) + 4(2-1) = 0 \Rightarrow a =$	M1	2.3
	The matrix M has an inverse when $a \neq -5$	A1	1.1b
		(2)	-
(b)	Minors: $\begin{pmatrix} 3 & -2 & 1 \\ -a-8 & 2 & a+4 \\ 4-a & -6 & -2-a \end{pmatrix}$ or Cofactors: $\begin{pmatrix} 3 & 2 & 1 \\ a+8 & 2 & -a-4 \\ 4-a & 6 & -2-a \end{pmatrix}$	B1	1 1.1b
	$\mathbf{M}^{-1} = \frac{1}{ \mathbf{M} } \operatorname{adj}(\mathbf{M})$	M1	1.1b
	$\begin{bmatrix} 3 & a+8 & 4-a \\ 1 & 2 & 2 \end{bmatrix}$ 2 correct rows or columns. Follow through their det M.	Alft	1.1b
	$\mathbf{M}^{-1} = \frac{1}{2a+10} \begin{pmatrix} 3 & a+8 & 4-a \\ 2 & 2 & 6 \\ 1 & -a-4 & -2-a \end{pmatrix} \qquad $	Alft	1.1b
		(4)	2

(ii)	When $n = 1$, this = $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$, this = $\begin{pmatrix} 3^1 & 0 \\ 3(3^1 - 1) & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$	B1	2.2a
	So the statement is true for $n = 1$		
	Assume true for $n = k$ so $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^k = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix}$	M1	2.4
	$ \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix} $	M1	2.1
	$= \begin{pmatrix} 3 \times 3^k & 0\\ 3 \times 3(3^k - 1) + 6 & 1 \end{pmatrix}$	A1	1.1b
	$= \begin{pmatrix} 3^{k+1} & 0\\ 3(3^{k+1}-1) & 1 \end{pmatrix}$	A1	1.1b
	If the statement is true for $n = k$ then it has been shown true for $n = k$ + 1 and as it is true for $n = 1$, the statement is true for all positive integers n .	A1	2.4
		(6)	
		(12	marks)

Notes:	
(i)(a)	
M1: Attempts dete	rminant, equates to zero and attempts to solve for <i>a</i> in order to establish the restriction for
a	
A1: Provides the co	prrect condition for a if M has an inverse
(i)(b)	
B1: A correct matr	ix of minors or cofactors
M1: For a complet	e method for the inverse
Alft: Two correct:	rows following through their determinant
Alft: Fully correct	inverse following through their determinant
(ii)	
B1: Shows the sta	atement is true for $n = 1$
M1: Assumes the	statement is true for $n = k$
M1: Attempts to	multiply the correct matrices
A1: Correct matri	x in terms of k
A1: Correct matri	ix in terms of $k + 1$
A1: Correct comp	olete conclusion